2024-元旦2024-元旦都有小半年没更新博客了, 已经鸽了好久了… 首先祝大家元旦快乐! 这半年来, 找工作和申博我都试了试, 最后是选择了自己觉得更合适的一条路, 也算是人生中做的一个关键的节点吧. 2023年是LLM横行霸道的一年, 我印象中光是2024-01-01 心情随笔心情随笔
Vision & Language Pretrained Model 总结2024.4.21: 添加CoCa, 并修改对WPA的描述. 2024.4.23: 增加了BLIP-2的部分描述. Vision & Language Pretraining 总结本文只是以总结的形式梳理了近期比较有代表性的VL2023-07-18 深度学习MM VLP
大模型并行优化大模型并行优化为什么要并行优化?大就是好, 虽然丛2019年人们的认识普遍就是大就是好, 这个概念在当今依然没有被改变, 只是有了更深刻的认识. 所以, 为什么要并行? 虽然大就是好, 模型太大显存吃不消(空间). 虽然大就是好2023-06-01 深度学习并行计算 分布式 ZeRO
QIDN: Query-based Instance Discrimination Network for Relational Triple ExtractionQuery-based Instance Discrimination Network for Relational Triple Extraction本文是论文Query-based Instance Discrimination Net2023-02-10 深度学习RTE ERE
UniRel: Unified Representation and Interaction for Joint Relational Triple ExtractionUniRel: Unified Representation and Interaction for Joint Relational Triple Extraction本文是论文UniRel: Unified Representation2023-01-03 深度学习RTE
OneEE: A One-Stage Framework for Fast Overlapping and Nested Event ExtractionOneEE: A One-Stage Framework for Fast Overlapping and Nested Event Extraction本文是论文OneEE: A One-Stage Framework for Fast2022-11-21 深度学习EE
W2NER: Unified Named Entity Recognition as Word - Word Relation ClassificationW2NER: Unified Named Entity Recognition as Word - Word Relation Classification本文是论文Unified Named Entity Recognition as W2022-10-16 深度学习NER
UniRE: A Unified Label Space for Entity Relation ExtractionUniRE: A Unified Label Space for Entity Relation Extraction本文是论文UniRE: A Unified Label Space for Entity Relation Extract2022-09-22 深度学习ERE
DirectRel: Relational Triple Extraction - One Step is EnoughRelational Triple Extraction: One Step is Enough本文是论文Relational Triple Extraction: One Step is Enough 的阅读笔记和个人理解, 论文来自IJ2022-08-31 深度学习RTE
OneRel: Joint Entity and Relation Extraction with One Module in One Step本文前置知识: TPLinker: TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking. OneR2022-08-14 深度学习RTE
Pytorch学习: Pytorch LightningPytorch学习: Pytorch LightningPytorch Lightning是在Pytorch基础上封装的框架, 号称”Pytorch里的Keras”, 如官网所述, 它具有灵活, 解耦, 易于复现, 自动化, 扩展性好等优点2022-08-14 深度学习编程 pytorch
RFBFN: A Relation - First Blank Filling Network for Joint Relational Triple Extraction本文前置知识: SPN: SPN: Joint Entity and Relation Extraction with Set Prediction Networks. RFBFN: A Relation - First Blank2022-07-09 深度学习RTE