SACN: End-to-end Structure-Aware Convolutional Networks for KBC本文前置知识: GNN: 详见图神经网络入门 ConvE: 详见ConvE: Convolutional 2D Knowledge Graph Embeddings ConvKB: 详见ConvKB: A Novel Embedding2021-03-15 知识图谱KGE GNN
Pytorch实现: BERT本文前置知识: Transformer: 详见Transformer精讲 BERT: 详见ELMo, GPT, BERT Pytorch实现: Transformer 2022.04.03: 修正Pre Norm效果好于Post No2021-03-12 深度学习NLP Transformer Pytorch
ConvR: Adaptive Convolution for Multi-Relational Learning本文前置知识: ConvE: 详见ConvE: Convolutional 2D Knowledge Graph Embeddings ConvR: Adaptive Convolution for Multi-Relational2021-03-09 知识图谱KGE
LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding2021.03.09: 修正关于引入逆三元组的影响. 2021.04.18: 更新一篇更早的类似论文GAKE. LightCAKE: A Lightweight Framework for Context-Aware Knowledge2021-03-08 知识图谱KGE
Introduction: Graph Neural Network本文前置知识: 图结构基础知识(数据结构相关内容, 自行查阅). 2021.04.06: 更新GraphSAGE的理解. Introduction: Graph Neural Network本文介绍的是GNN方面入门级别的知识, 其2021-03-04 深度学习GNN
ConvBERT: Improving BERT with Span-based Dynamic ConvolutionConvBERT: Improving BERT with Span-based Dynamic Convolution 本文前置知识: Light Weight Convolution: 详见基于轻量级卷积和动态卷积替代的注意力机制.2021-02-12 深度学习NLP CNN Attention
PPKE: Knowledge Representation Learning by Path-based Pre-training本文前置知识: BERT(Transformer Encoder). PPKE: Knowledge Representation Learning by Path-based Pre-training本文是论文PPKE: Know2021-01-18 知识图谱KGE
Argparse和LoggingArgparse和LoggingArgparse和Logging是Python实验中常用的两个模块. 之前没有整理过, 特此整理. ArgparseArgparse是用来解析Python命令行的标准库. 框架大致使用框架如下: impor2021-01-06 编程Python