机器学习之集成学习集成学习 Ensemble LearningBoosting, Bagging, Stacking都是集成学习的方式, 都是考虑用多个弱学习器通过某种方式集合在一起, 形成一个泛化性能更强的强学习器. BoostingBoosting是一种2020-08-09 机器学习集成学习 Boosting Stacking
机器学习之K邻近K邻近KNN K-Nearest NeighborK邻近是一种非常简单的监督学习分类方法. KNN指的是每个样本都可以通过它最近的K个样本来代表. 比方说在下述图片中, 若K=3, 找到距离未知样本即绿色圆圈最近的3个样本, 在该范围内红色2020-08-08 机器学习KNN
机器学习之决策树2020.09.08: 更新了剪枝. 决策树DT Desicion Tree决策树(Decision Tree) 是在已知各种情况发生概率的基础上, 通过构成决策树来求取净现值的期望值大于等于零的概率, 评价项目风险, 判断其可行性的决2020-08-07 机器学习决策树
机器学习之朴素贝叶斯朴素贝叶斯NB Naive Bayes朴素贝叶斯有一个非常Naive的假设: 所有特征都是相互独立的, 因此所有特征总的条件概率总是每个特征条件概率的乘积. 这个算法的核心就在于贝叶斯公式. 条件概率条件概率是贝叶斯定理的铺垫. 指的是事件2020-08-06 机器学习贝叶斯
机器学习之逻辑回归与线性回归2020.08.22: 附加了后续的逻辑回归部分. 逻辑回归想要了解逻辑回归,必须了解线性回归. 线性回归 Logistcs Regression线性回归是监督学习中最简单的模型了, 它具有非常好的可解释性, 也有一种简洁的典雅美.2020-08-05 机器学习线性回归
计算机网络-自顶向下计算机网络计网复习笔记, 参考书籍为自顶向下. 计算机网络体系结构这里的概念都比较散, 大多是一些计网的基础概念和整体知识的框架. 计算机网络的功能: 数据通信 资源共享 分布式处理 提高可靠性 负载均衡 计算机网络的分类(距离分):2020-08-04 计算机基础面试 计算机网络
机器学习之特征缩放特征缩放 Feature scaling特征缩放还有另外一个名字, 叫做标准化. 标准化能够尽可能的使得模型快速收敛, 如果某个特征的方差比别的特征大几个数量级的话, 用距离度量的算法就会受到非常大的影响, 比如神经网络, SVM, 逻辑回2020-08-03 机器学习特征缩放
机器学习之模型选择模型选择 Model Selection过拟合和欠拟合 Overfitting and Underfitting这个其实非常好解释, 就放在一起说了. 过拟合就像是平时做很多作业题但是却不会考试的学生, 一到考试就拉胯, 但是平时作业写得很2020-08-02 机器学习交叉验证
机器学习之损失函数损失函数 Loss function损失函数是用来度量模型当前预测状况与损失目标的差距的函数. 均方误差 MSE也称为平方损失, L2损失, 均方误差(Mean Squared error). 有时候人们也直接将其开根号称为RMSE, 这样2020-08-01 机器学习损失函数 交叉熵